
Chair of Software Engineering for Business Information Systems (sebis)

Faculty of Informatics

Technische Universität München

wwwmatthes.in.tum.de

Empirical Studies to Identify Best Practices for Addressing Recurring

Concerns of Enterprise Architects and Solution Architects in Large-

Scale Agile Development
Niklas Reiter, 02.09.2019, Guided Research - Final Presentation

Motivation

Research Methodology

Pattern Language for Large-Scale Agile Development

Recurring Concerns and Best Practices

Exemplary Patterns

Conclusion

Outline

© sebisNiklas Reiter - Guided Research: Final Presentation 2

Motivation

© sebis 3Niklas Reiter - Guided Research: Final Presentation

Applying agile methods on

large-scale projects leads to

several concerns [8].

Agile methods were originally

designed for working at team

level

Bottom-up

Short-term

orientation: Small

units and time-

limited

implementation

Focus on

principles and

idealized goals

Local and project-

specific optimum

Agile Methods [6,7]

Top-down

Long-term

planning and value

orientation

Danger of fixation

on formalities

Global and

company-wide

optimum

EAM [6,7]

Motivation

Research Methodology

Pattern Language for Large-Scale Agile Development

Recurring Concerns and Best Practices

Exemplary Patterns

Conclusion

Outline

© sebisNiklas Reiter - Guided Research: Final Presentation 4

Research Methodology – Mixed-Methods Research Design

© sebis 5Niklas Reiter - Guided Research: Final Presentation

Environment

Stakeholder of

large-scale agile

software

development

projects having

concerns

Knowledge Base

Theory on

Patterns, Pattern

Language and

Pattern Writing

Related Pattern

Languages

Theory on

Large-Scale

Agile

Development

Tasks and

Challenges of

Enterprise and

Solution

Architects

Guided Research

13 semi-structured interviews with

industry experts

Pattern Language for Large-Scale Agile

Development

RefineAssess

RigorRelevance

Design Science Approach [1] Pattern-Based Research Design [3]

Expert Interviews [2]

Deliverable: Identifying

recurring concerns and best

practices of enterprise and

solution architects in large-

scale agile development

Data Analysis

Deliverable: Analysis and

validation of identified

recurring concerns and good

of enterprise and solution

architects in large-scale agile

development

Case Study [10,13]

Deliverable: Investigating

the role of enterprise

architects in large-scale agile

development and their

collaboration with agile

teams

Structured Literature Review [12]

Deliverable: Identifying

recurring concerns of

stakeholders in large-scale-

agile development

Report

Deliverable: 35 recurring

concerns, 43 patterns, 22

pattern candidates

Motivation

Research Methodology

Pattern Language for Large-Scale Agile Development

Recurring Concerns and Best Practices

Exemplary Patterns

Conclusion

Outline

© sebisNiklas Reiter - Guided Research: Final Presentation 6

© sebisNiklas Reiter - Guided Research: Final Presentation 7

Pattern Language for Large-Scale Agile Development [9]

Stakeholder

are defined as persons who have an interest in the project and/or are actively

involved in the large-scale agile development.

Concern

describe challenges of stakeholders. They can be categorized as different topics

such as risks or responsibilities and addressed by different Patterns, Anti-Patterns or

Principles.

Principle

provide a common direction for action with the help of rules and guidelines to

address specific concerns.

Coordination Pattern

define coordination mechanisms that are proven solutions for recurring coordination

problems such as dependencies between activities or the management of tasks or

resources.

Methodology Pattern

define concrete steps that are proven solutions to a problem.

Viewpoint Pattern

define proven solutions for visualizing information such as documents, boards,

metrics, models, and reports.

Anti Pattern

define solutions that are unfavourable or harmful to the success of a software

project. Anti-patterns represent the counterpart to patterns.

Motivation

Research Methodology

Pattern Language for Large-Scale Agile Development

Recurring Concerns and Best Practices

Exemplary Patterns

Conclusion

Outline

© sebisNiklas Reiter - Guided Research: Final Presentation 8

© sebisNiklas Reiter - Guided Research: Final Presentation 10

Case Study & Expert Interviews (Overview)

Organization
No. Case Study

Interviews

No. Expert

Interviews
Roles

CarCo 20 3

Chief Technology Officer, Enterprise Architect,

Group Lead IT, Product Owner, Requirements

Engineer, Solution Architect, Scrum Master

ConsultCo - 1 Solution Architect

GlobalInsureCo 12 -
Agile Developer, Chapter Lead, Agile Coaching,

Enterprise Architect

ITCo 4 - Enterprise Architect, Product Owner

PublicIncureCo 4 -

Agile Developer, Enterprise Architect, Head of IT

Governance, Head of IT Governance

Department

RetailCo 5 3

Chapter Lead Business Process Architecture,

Chief Scrum Master, Enterprise Architect,

Product Owner, Solution Architect, Scrum

Master

SoftCo - 3 Enterprise Architect, Solution Architect

TechCo - 3 Enterprise Architect, Solution Architect

Sum 45 13 15

Recurring Concerns and Best Practices - Case Study & Expert Interviews

Expert Interviews

ID Role
Own

Experience
Organization’s Experience

1 Enterprise Architect 3 - 6 years 1 – 3 years

2 Enterprise Architect > 6 years > 6 years

3 Enterprise Architect > 6 years 3 - 6 years

4 Enterprise Architect > 6 years > 6 years

5 Enterprise Architect > 6 years 1 - 3 years

6 Enterprise Architect > 6 years 1 - 3 years

7 Solution Architect > 6 years 1 - 3 years

8 Enterprise Architect > 6 years 1 - 3 years

9 Solution Architect > 6 years > 6 years

10 Solution Architect > 6 years > 6 years

11 Solution Architect > 6 years 3 - 6 years

12 Solution Architect > 6 years 3 - 6 years

13 Enterprise Architect > 6 years 3 - 6 years

© sebisNiklas Reiter - Guided Research: Final Presentation 12

Recurring Concerns and Best Practices - Recurring Concerns

n = No. interviewees; o = No. organizations

Identified in Case Study

Identified in Expert Interviews

Identified in Literature

0 5 10 15 20 25

No. of Interviewees

C-9: How to find the right balance between architectural improvements and business value?; n = 26; o = 8

C-67: How to deal with a lack of understanding of architecture?; n = 26; o = 8

C-6: How to deal with technical debts?; n = 23; o = 8

C-51: How to ensure that agile teams adhere to architecture-related activities?; n = 22; o = 8

C-73: How to establish a common architectural direction across the organization?; n = 21; o = 8

C-72: How to deal with architecture-related uncertainties and risks?; n = 20; o = 8

C-85: How to align enterprise architecture and product management?; n = 19; o = 8

C-75: How to deal with communication gaps between EA and AT?; n = 19; o = 6

C-69: How to verify and control the compliance of ATs with architecture principles?; n = 19; o = 8

C-71: How to decompose monolithic systems?; n = 18; o = 8

C-77: How to identify hotspots within the architecture?; n = 17; o = 7

C-80: How to align business and IT?; n = 16; o = 6

C-78: How to ensure that architecture check-ins are controlled?; n = 16; o = 6

C-2: How to consider integration issues and dependencies with other teams?; n = 16; o = 7

C-21: How to manage dependencies to other existing environments?; n = 16; o = 7

C-81: How to create scalable software?; n = 15; o = 6

C-27: How to manage and share knowledge about system components and dependencies?; n = 15; o = 8

C-38: How to facilitate standardization across agile teams?; n = 15; o = 5

C-26: How to align and communicate architectural decisions?; n = 14; o = 7

C-74: How to balance intentional and emergent architecture?; n = 13; o = 6

C-40: How to apply agile practices for developing/maintaining legacy systems?; n = 14; o = 6

C-25: How to manage and integrate heterogenous subsystems of different development teams?; n = 12; o = 6

C-68: How to deal with centralized and top-down architectural decision?; n = 12; o = 5

C-84: How to migrate applications to the cloud?; n = 11; o = 7

C-82: How to integrate internal and external cloud?; n = 11; o = 5

C-79: How to decide whether to make or buy?; n = 11; o = 6

C-8: How to ensure that non functional requirements are considered by the development team?; n = 11; o = 6

C-64: How to define a lightweight review process for adopting new technology?; n = 11; o = 8

C-34: How to ensure the reuse of enterprise assets?; n = 10; o = 6

C-70: How to assign systems to business domains?; n = 9; o = 5

C-76: How to deal with the reduced time for planning architectures?; n = 7; o = 4

C-14: How to create a proper upfront architecture design of the system?; n = 7; o = 5

C-57: How to decompose agile teams in smaller independent teams?; n = 4; o = 4

C-83: How to develop software systems that are open for third parties?; n = 4; o = 2

C-86: How to deal with the new working methodology as an architect within agile environments?; n = 14; 0 = 8 10 9

16

© sebisNiklas Reiter - Guided Research: Final Presentation 13

Recurring Concerns and Best Practices - Patterns and Pattern Candidates

P - 18

Collocate

Architects with

Agile Teams

**

P - 19

IT Systems

Communicate

through Services

P - 20

End to End

Responsibility

**

P - 21

Loose Coupling of

Systems

P - 21

Reuse is

Preferable to Buy,

which is

Preferable to Make

**

P - 22

Reuse

Redundancy

**

P - 23

Applications rely

on One

Technology Stack

P - 24

Build the Simplest

Architecture that

Can Possibly

Work

P - 32

Systems

Communicate

through Services

Only

P - 25

Use

Microservices

**

P - 26

API First

P - 27

Cloud First

P - 28

Use Direct

Communication

P - 29

Develop

Competition

Critical Software

Systems Inhouse

P - 30

Strictly Separate

Build and Run

Stages

P - 31

Composition Over

Inheritance

CO - 2

Community of

Practice

CO - 15

Center of

Excellence

CO - 16

Lunch Talk

M - 22

Agile Architecture

Governance

Approach

M - 23

Enterprise

Architecture

Governance

Service

**

M - 24

Architecture

Governance

through

Institutional

Pressure

**

M - 25

Architectural

Thinking

M - 26

Add Principles

to DoD

M - 27

Quality

Gate

**

M - 28

Principle based

Intentional

Architecture

M - 29

Supporting

Architect

M - 30

Architectural

Spike

M - 31

Agile

Collaboration

Environment

**

M - 32

Architecture

Gate

**

M - 33

Collaborative

Architecture

Decision Making

M - 34

Architectural

Runway

**

M - 35

Empowered

Community of

Practice

M - 36

Plan Additional

Time for Enablers

M - 37

Domain Driven

Design

M - 38

Business

Capability Centric

Teams

**

M - 39

Pair Programming

M - 40

Defining

Architecture

Principles as Quality

Gate Policies

V - 19

Architecture

Solution Space

V - 20

Business

Domain Map

V - 21

Business

Capability Map

V - 22

Technical Debt

Backlog

**

V - 23

Communication

Diagram

V - 24

Context

Map

*

V - 25

Data

Diagram

**

V - 26

Weighted

Shortest Job

First

V - 27

Number of

API Calls

**

V - 28

Number of

Changes of

Architecture

Models

V - 29

Number of

Consulting

Requests

**

V - 30

Number of

Dependencies

V - 31

Number of

Releases

**

V - 32

Number of

Version Skippings

V - 33

System

Diagram

V - 34

Time to Feature

Delivery

**

V - 35

Total Cost of

Ownership

**

V - 36

Technology

Radar

A - 11

Don’t Use Best

of Breed

**

A -12

Don’t be a

PowerPoint

Architect

A - 13

Don’t Use Big

Design Up Front

A - 14

Don’t Separate

between

Enterprise and

Software

Architecture

A - 15

Don’t Build an

Ivory Tower

A - 16

Don’t Overshoot

Coordination

Meetings

**

A - 17

Don’t Use Indirect

Communication

A - 18

Don’t Force

Requirements

Without Support

A - 19

Don’t Create Data

Silos

ID

Name

Occurrence

Anti Pattern

Coordination Pattern

Methodology Pattern

Viewpoint Pattern

Principle

Pattern

11

3

12

10

7

No. of Patterns

5

0

7

8

2

No. of P. Candidates

C-85

M-25

Architectural

Thinking

© sebisNiklas Reiter - Guided Research: Final Presentation 14

Recurring Concerns and Best Practices - Relationship

C-6 C-9 C-25

P-31P-30

C-67 C-71 C-79 C-80C-73 C-81 C-82C-72 C-75C-26 C-69

P-26 P-28 P-29

C-68 C-74

P-24

C-14 C-76

V-36

C-16C-2 A-14 A-18A-15 A-17 A-19

M-38M-37M-30M-29 M-41M-40M-33

Lunch TalksCommunity Of

Practice

Plan Additional

Time for Enabler
Defining Architecture

Principles as Quality

Gate Policies

Collaborative

Architecture Decision

Making

Domain

Driven Design

Architectural

Spike
Supporting

Architect
Pair

Programming

Don’t Separate Between

Enterprise and Solution

Architecture

Don’t build an

Ivory Tower

Don’t Use Indirect

Communication

Don’t Force

Requirements Without

Support

Don’t Create

Data Silos

Composition

Over Inheritance

Strictly Separate

Build and Run Stages
API First Use Direct

Communication

Develop Competition

Critical Software

Systems Inhouse

Technology Radar Build the Simplest

Architecture that

Can Possibly Work

C-34 C-38

V-21

Business

Capability Map

M-22 M-28M-26

Principle Based

Intentional

Architecture

Add Principles

to Definition of

Done

Agile Architecture

Governance Approach

V-19 V-20

Architecture

Solution Space
Business

Domain Map

How to ensure reuse of

enterprise assets?

How to facilitate

standardization across

agile teams?

A-12

Don’t be a

PowerPoint

Architect

C-86

How to deal with the new

working methodology as

an architect within agile

environments?

Motivation

Research Methodology

Pattern Language for Large-Scale Agile Development

Recurring Concerns and Best Practices

Exemplary Patterns

Conclusion

Outline

© sebisNiklas Reiter - Guided Research: Final Presentation 15

Exemplary V-Pattern: Architecture Solution Space

© sebisNiklas Reiter - Guided Research: Final Presentation 16

Roles

Agile

Team

Solution

Architect

Software

Developer

Enterprise

Architect

Scrum

Master

Product

Owner

Berlin Munich New York

AT 1 AT 2 AT 3

Developed

function in 2018

Enterprise Assets

Function for Customer

Value Calculation

Principles

Feedback

VC B UT D AT DTP MV

QG QG QG QG QG QG

Quality Gates

Function X

System X

System X

System X

System X

System X

System X

Reference

Architectures

Architectural

Standards

Develops already existing

function again in 2019

Function X

Function for Customer

Value Calculation

Function X

C-34: How to ensure reuse of enterprise

assets?

C-38: How to facilitate standardization

across agile teams?

Exemplary V-Pattern: Architecture Solution Space

© sebisNiklas Reiter - Guided Research: Final Presentation 17

Berlin

AT 1

Munich

AT 2

New York

AT 3

Architecture Solution Space
Purpose and Target ... 2

Definitions of relevant Terms and Abbreviations .. 3

Architecture Goals ... 4

References to Applications that can be Reused ... 5

Dependencies to other Applications...................... 6

Architecture Principles and Guidelines 7

Provides guidance

Helps to identify risks and

dependencies in advance

Does not restrict freedom

of developers

Provides a clean framework

Only effective if created

collaboratively

Less effective if not

maintained properly

Control of adherence is

difficult

No consequences in case of

non-compliance

Agile transformation forces organizations to

create and design architectures differently

→ Maximal autonomy vs. EAM

specifications

Context Problem

C-34: How to ensure reuse of enterprise

assets?

C-38: How to facilitate standardization

across agile teams?

Exemplary Anti-Pattern: Don‘t be a PowerPoint Architect

© sebisNiklas Reiter - Guided Research: Final Presentation 18

How to deal with the new

working methodology as an

architect within agile

environments?

How to deal with the reduced

time for planning

architectures?

2005 2013

Start of the Agile

Transformation

Peter and Juli started working as enterprise

architects in a large IT Company

How much

specification

is necessary?

What do agile

teams expect from

enterprise

architects?

Today

Exemplary Anti-Pattern: Don‘t be a PowerPoint Architect

© sebisNiklas Reiter - Guided Research: Final Presentation 19

Requires a broad and deep

skill set which is rare

Architects need to have

enough capacity

Enabling takes a lot of

time

Provides technical

guidance

Increases acceptance of

architects by agile teams

Increases understanding

of architecture

Increases intrinsic

motivation to adhere to

architecture principles

Working methodology has changed in an

agile environment

→ More technical support is required

C-86: How to deal with the new working

methodology as an architect within agile

environments?

Context Problem

Motivation

Research Methodology

Pattern Language for Large-Scale Agile Development

Recurring Concerns and Best Practices

Exemplary Patterns

Conclusion

Outline

© sebisNiklas Reiter - Guided Research: Final Presentation 20

Conclusion

© sebisNiklas Reiter - Guided Research: Final Presentation 21

Key Findings

• Agile transformation changes working methodology of architects leading do Anti-Patterns

• Patterns and Principles provide a way to balance intentional and emergent architecture

• Role of the supporting architect is increasingly important and requires deep technical know-how

• Feedback mechanisms and automated testing needs to be implemented for compliance

Future Work

• Identification of new patterns by conducting similar projects at other organizations

• Validation of identified patterns and pattern candidates in other organizations

• Long-time studies on the progress of concerns within agile transformations

References

© sebis 22Niklas Reiter - Guided Research: Final Presentation

[1] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design Science in Information Systems Research. MIS Quarterly, 28(1):75–105, March 2004.

[2] Bogner, A., Littig, B., & Menz, W. (2009). Introduction: Expert interviews—An introduction to a new methodological debate. In Interviewing experts (pp. 1-13). Palgrave

Macmillan, London.

[3] Buckl S., Matthes F., Schneider A.W., & Schweda C.M. (2013) Pattern-Based Design Research – An Iterative Research Method Balancing Rigor and Relevance.

[4] Dingsøyr , T., Nerur , S., Balijepally , V., & Moe, N. B. (2012). A decade of agile methodologies: Towards explaining agile software

development. Journal of Systems and Software , 85 (6), 1213 1221.

[5] D. Greefhorst, E. Proper (2011): Architecture Principles: The Cornerstones of Enterprise Architecture. Springer-Verlag Berlin Heidelberg.

[6] Hanschke, S., Ernsting, J., & Kuchen, H. (2015, January). Integrating agile software development and enterprise architecture management. In System Sciences (HICSS),

2015 48th Hawaii International Conference on (pp. 4099-4108). IEEE.

[7] Hauder, M., Roth, S., Schulz, C., & Matthes, F. (2014). Agile enterprise architecture management: an analysis on the application of agile principles. In International

Symposium on Business Modeling and Software Design BMSD.

[8] Uludağ , Ö., Kleehaus , M., Caprano , C., & Matthes , F. (2018). Identifying and Structuring Challenges in Large Scale Agile Development Based on a Structured Literature

Review. 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC) EDOC), 191 197.

[9] Uludağ, Ö., Harders, N.-M., & Matthes, F. (2019). Documenting Recurring Concerns and Patterns in Large-

Scale Agile Development.

[10] Runeson and Höst (2009): Guidelines for conducting and reporting case study research in software engineering;

[11] Tashakkori, A., & Teddlie, C. (Eds.). (2010). Sage handbook of mixed methods in social & behavioral research. sage.

[12] Vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., & Cleven, A. (2009, June). Reconstructing the giant: on the importance of rigour in documenting the

literature search process. In Ecis (Vol. 9, pp. 2206-2217).

[13] Yin (2008): Case Study Research: Design and Methods (Applied Social Research Methods);

© sebis 23Niklas Reiter - Guided Research: Final Presentation

Thank you for your attention!

